EFDS ALD for Industry 2023

Der diesjährige ALD for Industry Workshop war wie schon in den vergangenen Jahren ein voller Erfolg, dank der EFDS sehr gut organisiert und voller interessanter Vorträge, Diskussionen und Gespräche. Nachfolgend gibt es eine Auswahl an Fotos von der Veranstaltung und wer alle Fotos sehen möchte, kann dies über folgendem Link: https://www.katharinaknaut.com/index.php?seite=archiv&name=2023EFDS Am 21. und 22. … Weiterlesen

In situ studies on atomic layer etching of aluminum oxide using sequential reactions with trimethylaluminum and hydrogen fluoride

Controlled thin film etching is essential for future semiconductor devices, especially with complex high aspect ratio structures. Therefore, self-limiting atomic layer etching processes are of great interest to the semiconductor industry. In this work, a process for atomic layer etching of aluminum oxide (Al2O3) films using sequential and self-limiting thermal reactions with trimethylaluminum and hydrogen fluoride as reactants was demonstrated.

Characteristics of ALD-ZnO Thin Film Transistor Using H2O and H2O2 as Oxygen Sources

Jun Yang, Amin Bahrami, Xingwei Ding, Sebastian Lehmann, Nadine Kruse, Shiyang He, Bowen Wang, Martin Hantusch, Kornelius Nielsch ZnO thin films are deposited by atomic layer deposition (ALD) using diethylzinc as the Zn source and H2O and H2O2 as oxygen sources. The oxidant- and temperature-dependent electrical properties and growth characteristics are systematically investigated. Materials analysis … Weiterlesen

Surface Modification of Bismuth by ALD of Antimony Oxide for Suppressing Lattice Thermal Conductivity

Surface modification may significantly improve the performance of thermoelectric materials by suppressing thermal conductivity. Using the powder atomic layer deposition method, the newly developed Sb2O5 thin films produced from SbCl5 and H2O2 were formed on the surfaces of Bi powders. Because of the high thermal resistance generated by Sb2O5 layers on Bi particles, a substantial decrease in κtot from 7.8 to 5.7 W m–1 K–1 was obtained with just 5 cycles of Sb2O5 layer deposition and a 16% reduction in κlat. Because of the strong phonon scattering, the maximum zT values increased by around 12% and were relocated to 423 K.

Low-Temperature Atomic Layer Deposition of High-k SbOx for Thin Film Transistors


SbOx thin films are deposited by atomic layer deposition (ALD) using SbCl5 and Sb(NMe2)3 as antimony reactants and H2O and H2O2 as oxidizers at low temperatures. SbCl5 can react with both oxidizers, while no deposition is found to occur using Sb(NMe2)3 and H2O. For the first time, the reaction mechanism and dielectric properties of ALD-SbOx thin films are systematically studied, which exhibit a high breakdown field of ≈4 MV/cm and high areal capacitance ranging from 150 to 200 nF/cm², corresponding to a dielectric constant ranging from 10 to 13. The ZnO semiconductor layer is integrated into a SbOx dielectric layer, and thin film transistors (TFTs) are successfully fabricated. A TFT with a SbOx dielectric layer deposited at 200 °C from Sb(NMe2)3 and H2O2 presents excellent performance, such as a field effect mobility (µ) of 12.4 cm²/V∙s, Ion/Ioff ratio of 4∙10^8, subthreshold swing of 0.22 V/dec, and a trapping state (Ntrap) of 1.1∙10^12 1/eV∙cm². The amorphous structure and high areal capacitance of SbOx boosts the interface between the semiconductor and dielectric layer of TFT devices and provide a strong electric field for electrons to improve the device mobility.